T(t)=-0.021t^2+0.4536t+98.9.

Simple and best practice solution for T(t)=-0.021t^2+0.4536t+98.9. equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for T(t)=-0.021t^2+0.4536t+98.9. equation:



(T)=-0.021T^2+0.4536T+98.9.
We move all terms to the left:
(T)-(-0.021T^2+0.4536T+98.9.)=0
We get rid of parentheses
0.021T^2-0.4536T+T-98.9.=0
We add all the numbers together, and all the variables
0.021T^2+0.5464T=0
a = 0.021; b = 0.5464; c = 0;
Δ = b2-4ac
Δ = 0.54642-4·0.021·0
Δ = 0.29855296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.5464)-\sqrt{0.29855296}}{2*0.021}=\frac{-0.5464-\sqrt{0.29855296}}{0.042} $
$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.5464)+\sqrt{0.29855296}}{2*0.021}=\frac{-0.5464+\sqrt{0.29855296}}{0.042} $

See similar equations:

| 6x-5=6x-1+7 | | 30x=1,500 | | 2d+3.4=12 | | 2/3x-20=4/5 | | (77-x)+40=x | | 3.4+2d=12 | | 2(2x+3)-7x=18+(x+2x) | | 3x+63=x+13 | | x*72=90 | | x/72=90 | | 12=2d+3.4 | | x-72=90 | | x—3=6 | | 5t-80=t | | 9^2x=3^3x+1 | | (77-x)+44=x | | 1/4n-9=5 | | 3a-1=5a-11 | | 2x/15=8.8. | | 101+5x=53-6x | | 8x+54=5 | | (2x+58)=114 | | y^2=y-6 | | x-(3-x)=7-(x+2) | | (3x+2)+62=180 | | -3(-8x+5)=-32x-26 | | 16=x-27 | | x-(3-x)=7-(x+3) | | 3((-6x+4)/2+3)-5=19 | | -459=-3-8(1-8x) | | 4(6-x)-2(-3x-5)=9-2x | | 2/8=10/x |

Equations solver categories